Swift Observation of long GRB 090912

T. N. Ukwatta (GSFC/GWU), B. Sbarufatti (INAF-IASFPA), P.A. Curran (MSSL-UCL), S. D. Barthelmy (GSFC), D. N. Burrows (PSU), P. Roming (PSU), N. Gehrels (GSFC), for the Swift Team

1 Introduction

BAT triggered on GRB 090912 at 15:50:29 UT (Trigger 362633) (Ukwatta, et al., GCN Circ. 9905). This was a 10 sigma rate-trigger on a long burst with $T_{90} = 144 \pm 23$ sec. Swift executed a delayed slewed to the burst. Narrow field instruments started observations at $\sim T + 792.6$ sec, and our best position is the UVOT-enhanced XRT location RA(J2000) = 188.04297 deg (12h 32m 10.31s), Dec(J2000) = +61.48454 deg (+61d 29' 04.4") with an uncertainty of 1.8 arcsec (90% confidence, including boresight uncertainties), reported by Beardmore et al., GCN Circ. 9906.

2 BAT Observation and Analysis

Using the data set from T-240 to $T+962\,\mathrm{sec}$, further analysis of BAT GRB 090912 has been performed by BAT team (Ukwatta, et al., GCN Circ. 9909). The BAT ground-calculated position is $\mathrm{RA}(J2000)=188.046\,\mathrm{deg}$ (12h 32m 11.1s), $\mathrm{Dec}(J2000)=61.475\,\mathrm{deg}$ (+61d 28' 29.4") \pm 1.2 arcmin, (radius, systematic and statistical, 90% containment). The partial coding was 30% (the bore sight angle was 33.9 deg).

The mask-weighted light curve (Fig. 1) shows two peaks. The first starts around $\sim T-4$ sec, shows three sub peaks at $\sim T+0$ sec, $\sim T+4$ sec, and $\sim T+7$ sec, and ends around $\sim T+25$ sec. The second peak starts at $\sim T+70$ sec, peaks at $\sim T+88$, and ends around $\sim T+145$ sec. T90 (15 – 350 keV) is 144.0 ± 22.6 sec (estimated error including systematics).

The time-averaged spectrum from T-15.9 to T+160.1 sec is best fit by a power law with an exponential cutoff. This fit gives a photon index of 0.91 ± 0.44 , and Epeak of 69.3 ± 19.5 keV (chi squared 42.50 for 56 d.o.f.). For this model the total fluence in the 15-150 keV band is $(4.5\pm0.3)\times10^{-6}$ erg/cm2. The 1-sec peak photon flux measured from T+87.56 sec in the 15-150 keV band is 1.0 ± 0.1 ph/cm2/sec. A fit to a simple power law gives a photon index of 1.66 ± 0.09 (chi squared 52.84 for 57 d.o.f.). All the quoted errors are at the 90% confidence level.

The results of the batgrbproduct analysis are available at http://gcn.gsfc.nasa.gov/notices_s/362633/BA/

3 XRT Observations and Analysis

XRT data were collected from $\sim T+806$ s to $\sim T+66$ ks after the BAT trigger. The data are entirely in Photon Counting (PC) mode. The best position of the X-ray afterglow is the UVOT-enhanced XRT position (Beardmore, et al., GCN Circ. 9906)

RA(J2000) = 12h 32m 10.31sDec(J2000) = +61d 29' 04.4''

with an uncertainty of 1.8 arcsec (radius, 90% confidence).

The 0.3-10 keV X-ray light curve (Fig. 2) is best fitted by a power-law with a decay index of -0.75 ± 0.03 . Faint flaring activity is detected along the decay.

The average XRT spectrum (Fig. 3) is best fit by a power-law with a index of 2.1 ± 0.1 . The absorbing

column is NH = $(5.2\pm0.7)\times10^{20}\,\mathrm{cm^{-2}}$, in excess with respect to the Galactic value of $1.3\times10^{20}\,\mathrm{cm^{-2}}$ (Kalberla et al. 2005). The average observed (unabsorbed) fluxes are $3.0(5.7)\times10^{-12}\,\mathrm{ergs\,cm^{-2}\,s^{-1}}$.

The results of the XRT-team automatic analysis are available at http://www.swift.ac.uk/xrt_products/00362633.

4 UVOT Observation and Analysis

The Swift/UVOT began settled observations of the field of GRB 090912, 796 seconds after the BAT trigger. No optical afterglow consistent with the enhanced XRT position (Beardmore *et al.*, *GCN Circ.* 9906) is detected in the UVOT exposures. Preliminary magnitudes and 3-sigma upper limits using the UVOT photometric system (Poole *et al.*, 2008, MNRAS, 383, 627) for the first finding charts (fc) and subsequent exposures are:

Filter	Tstart (s)	Tstop (s)	Exposure (s)	Magnitude
white(fc)	796	946	147	>20.50
white	796	7707	608	> 21.09
V	1129	8118	294	> 19.04
b	1228	7502	254	> 19.91
u	1204	7297	313	> 19.58
uvw1	1179	7092	313	> 19.82
uvm2	6688	8273	344	> 19.78
uvw2	7713	7913	197	> 19.78

Table 1: Magnitudes and limits from UVOT observations

The values quoted above are not corrected for the Galactic extinction due to the reddening of E_{B-V} = 0.01 in the direction of the burst (Schlegel, et al.1998, ApJS, 500, 525).

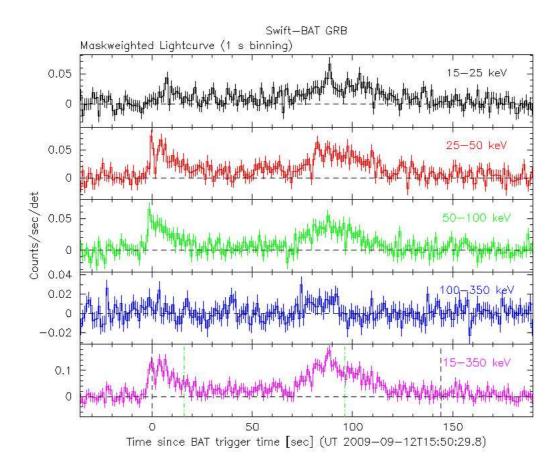


Figure 1: The mask-weighted light curve in the 4 individual plus total energy bands. The units are counts/sec/illuminated-detector and T_0 is 15:50:29 UT.

GCN Report 251.1 13-Oct-09

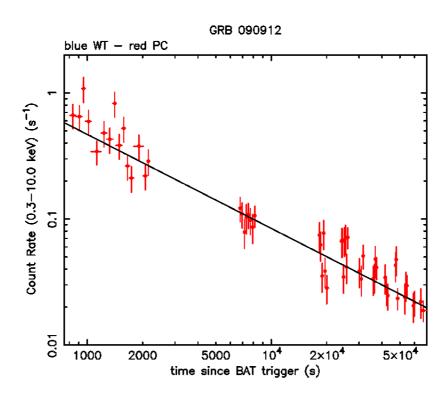


Figure 2: XRT Lightcurve. Flux in the 0.3-10 keV band. The approximate conversion is 1 count/sec = $\sim 4.9 \times 10^{-11}$ ergs/cm²/sec.

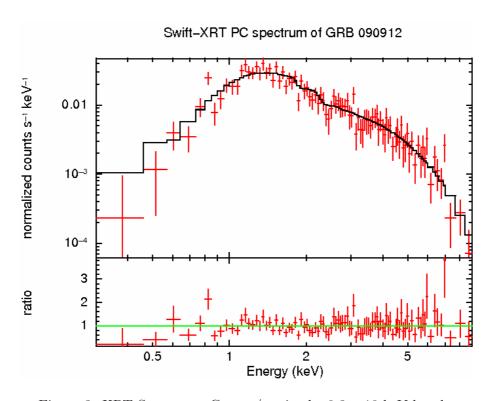


Figure 3: XRT Spectrum. Counts/sec in the 0.3 - 10 keV band.